International Mathematical Olympiad 2006 (Ljubljana, Slovenia) Country Scores

Position Country Score Team Size Score on Question Number of Medals
1 2 3 4 5 6 Gold Silver Bronze
China [CHN] 214 6 42 42 35 41 38 16 6 0 0
Russia [RUS] 174 6 42 36 11 42 28 15 3 3 0
South Korea [KOR] 170 6 42 20 30 42 29 7 4 2 0
Germany [DEU] 157 6 42 24 9 42 32 8 4 0 2
United States of America [USA] 154 6 42 41 7 41 20 3 2 4 0
Romania [ROU] 152 6 42 24 17 41 27 1 3 1 2
Japan [JPN] 146 6 40 35 13 42 13 3 2 3 1
Iran [IRN] 145 6 42 31 8 39 24 1 3 3 0
Moldova [MDA] 140 6 42 21 16 40 14 7 2 1 3
10  Taiwan [TWN] 136 6 42 27 14 40 13 0 1 5 0
11  Poland [POL] 133 6 36 20 9 41 20 7 1 2 3
12  Italy [ITA] 132 6 40 26 1 41 22 2 2 2 0
13  Vietnam [VNM] 131 6 42 6 24 40 19 0 2 2 2
14  Hong Kong [HKG] 129 6 42 30 9 40 8 0 1 3 2
15= Canada [CAN] 123 6 42 27 7 41 5 1 0 5 1
15= Thailand [THA] 123 6 42 18 9 42 12 0 1 3 2
17  Hungary [HUN] 122 6 42 23 1 38 18 0 0 5 1
18  Slovakia [SVK] 118 6 40 22 2 41 12 1 1 2 3
19= Turkey [TUR] 117 6 42 16 2 42 15 0 0 4 1
19= United Kingdom [UNK] 117 6 42 22 1 37 15 0 0 4 1
21  Bulgaria [BGR] 116 6 42 14 4 42 14 0 0 4 1
22  Ukraine [UKR] 114 6 42 14 9 40 9 0 1 2 2
23  Belarus [BLR] 111 6 42 9 3 40 17 0 0 3 2
24  Mexico [MEX] 110 6 37 16 1 37 19 0 1 2 1
25  Israel [ISR] 109 6 40 13 6 41 5 4 0 3 1
26  Australia [AUS] 108 6 42 24 2 32 8 0 0 3 2
27  Singapore [SGP] 100 6 40 17 1 36 6 0 0 2 3
28  France [FRA] 99 6 42 9 5 35 1 7 1 0 3
29  Brazil [BRA] 96 6 42 9 2 42 1 0 0 0 6
30= Argentina [ARG] 95 6 40 15 1 35 4 0 0 2 2
30= Kazakhstan [KAZ] 95 6 42 5 2 39 7 0 0 1 4
30= Switzerland [SUI] 95 6 42 13 14 24 2 0 1 1 0
33= Georgia [GEO] 94 6 35 13 1 41 4 0 0 1 3
33= Lithuania [LTU] 94 6 35 16 1 39 3 0 0 1 2
35  India [IND] 92 6 42 3 4 36 4 3 0 0 5
36= Armenia [ARM] 90 6 42 1 10 34 3 0 0 1 1
36= Slovenia [SVN] 90 6 42 11 0 36 1 0 0 1 3
38  Serbia [SER] 88 6 42 6 2 36 2 0 0 0 5
39  Finland [FIN] 86 6 39 10 1 31 5 0 0 0 4
40  Peru [PER] 85 6 42 1 0 37 5 0 0 1 1
41  Bosnia-Herzegovina [BIH] 84 6 35 10 1 34 4 0 0 1 2
42  Austria [AUT] 83 6 42 6 0 28 7 0 0 0 3
43  Sweden [SWE] 82 6 35 17 0 28 2 0 0 0 3
44= Estonia [EST] 80 6 38 6 1 34 1 0 0 0 2
44= Mongolia [MNG] 80 6 42 4 8 26 0 0 0 0 2
44= Spain [ESP] 80 6 40 10 1 25 4 0 0 1 2
47  Portugal [POR] 78 6 38 10 0 26 4 0 0 0 3
48= Azerbaijan [AZE] 77 6 24 1 2 42 8 0 0 1 1
48= Czech Republic [CZE] 77 6 42 5 1 27 2 0 0 0 3
50= Albania [ALB] 76 6 29 1 1 36 8 1 0 1 1
50= Colombia [COL] 76 6 40 6 0 28 2 0 0 0 2
52= Belgium [BEL] 75 6 33 2 3 35 1 1 0 0 1
52= Latvia [LVA] 75 6 27 15 0 27 1 5 0 0 3
54  Croatia [HRV] 72 6 33 4 2 24 9 0 0 1 1
55  Sri Lanka [LKA] 71 5 30 3 2 34 2 0 0 0 3
56  Greece [GRC] 69 6 35 5 2 27 0 0 0 0 2
57  Uzbekistan [UZB] 68 6 25 2 1 37 3 0 0 0 2
58  New Zealand [NZL] 66 6 37 4 0 22 3 0 0 0 2
59= Iceland [ISL] 63 6 36 6 0 21 0 0 0 0 1
59= Macau [MAC] 63 6 28 3 2 29 1 0 0 0 2
61  Turkmenistan [TKM] 59 5 24 0 2 27 6 0 0 1 1
62= Macedonia [MKD] 57 6 31 3 0 23 0 0 0 0 1
62= Netherlands [NLD] 57 6 37 4 0 12 4 0 0 0 0
62= South Africa [ZAF] 57 6 36 4 0 16 1 0 0 0 0
65  Morocco [MAR] 55 6 22 0 0 32 1 0 0 0 0
66  Norway [NOR] 52 6 21 3 0 25 3 0 0 0 1
67  Ireland [IRL] 49 6 22 4 0 22 1 0 0 0 0
68  Paraguay [PAR] 47 4 22 7 0 18 0 0 0 1 0
69  Denmark [DNK] 45 6 24 8 0 11 2 0 0 0 0
70= Ecuador [ECU] 40 6 22 5 0 13 0 0 0 0 1
70= Malaysia [MYS] 40 6 18 2 0 20 0 0 0 0 1
72  Tajikistan [TJK] 35 6 16 0 0 19 0 0 0 0 0
73= Trinidad and Tobago [TTO] 34 6 10 0 0 23 1 0 0 0 0
73= Venezuela [VEN] 34 4 23 2 0 9 0 0 0 0 0
75  Panama [PAN] 33 4 23 1 0 9 0 0 0 0 0
76  Pakistan [PAK] 32 5 18 2 0 10 2 0 0 0 0
77  Kyrgyzstan [KGZ] 31 6 18 1 3 8 1 0 0 0 0
78= Costa Rica [CRI] 27 2 14 1 1 11 0 0 0 0 1
78= El Salvador [SLV] 27 3 19 3 0 5 0 0 0 0 0
80  Bangladesh [BGD] 22 4 16 1 1 4 0 0 0 0 0
81  Cyprus [CYP] 19 6 11 3 0 5 0 0 0 0 0
82= Luxembourg [LUX] 12 2 7 1 0 4 0 0 0 0 0
82= Uruguay [URY] 12 2 7 2 0 3 0 0 0 0 0
84= Nigeria [NGA] 11 6 2 0 0 8 1 0 0 0 0
84= Puerto Rico [PRI] 11 6 2 3 0 6 0 0 0 0 0
86= Bolivia [BOL] 5 2 2 1 0 2 0 0 0 0 0
86= Kuwait [KWT] 5 4 0 0 0 5 0 0 0 0 0
88  Saudi Arabia [SAU] 3 4 0 1 0 2 0 0 0 0 0
89  Liechtenstein [LIE] 2 1 0 1 0 1 0 0 0 0 0
90  Mozambique [MOZ] 0 3 0 0 0 0 0 0 0 0 0

 

 

 

Notices of the AMS
October 1995

U.S. Places Eleventh in International Olympiad

horizontal rule

The U.S. team for the International Mathematical Olympiad (IMO), held in July in Toronto, placed eleventh out of a record number of 74 competing teams. Each of the six members of the U.S. team received a medal. The top twelve teams, in order, were China, Romania, Russia, Vietnam, Hungary, Bulgaria, South Korea, Iran, Japan, United Kingdom, U.S., and India.

Aleksandr L. Khazanov of Brooklyn, New York, Jacob A. Lurie of Bethesda, Maryland, and Josh P. Nichols-Barrer of Newton Center, Massachusetts, received silver medals. Khazanov and Lurie were members of last year's IMO team, which achieved a perfect score for the first time in IMO history. Receiving bronze medals were Christopher Chang of Palo Alto, California, Jay H. Chyung of Iowa City, Iowa, and Andrei C. Gnepp of Orange, Ohio.

Titu Andreescu of the Illinois Mathematics and Science Academy was the team leader. ``Even though our team ranked eleventh this year, all of our students and coaches did their best,'' he said. ``We participated with a young and promising team of six Americans who gave everything they were capable of and were representatives of our country. I am proud of them all.'' The team was also accompanied by Paul Zeitz of the University of San Francisco and Walter E. Mientka of the University of Nebraska at Lincoln.

The IMO team members participated in a preparatory training session this summer and were selected from a larger group of top performers on the U.S.A. Mathematical Olympiad (USAMO). The USAMO is sponsored by nine national associations in the mathematical sciences, the AMS among them. Arrangements are provided by the Mathematical Association of America.

Here is a representative question from the 1995 IMO. Let $p$ be a prime number. Find the number of subsets $A$ of the set ${1,2,...,2p}$ such that: (1) $A$ has exactly $p$ elements, and (2) the sum of all the elements in $A$ is divisible by $p$.

--Joint Policy Board for Mathematics News Release
For comments or for more information phone: 714/951-5206, or email manifesto@christianparty.net OR Become a Signatory to the FATHERS' MANIFESTOsm